SANTIAGO NUMÉRICO I
 Cuarto Encuentro de Análisis Numérico de Ecuaciones Diferenciales Parciales
 Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Enero 14-16, 2009

Estimates for Raviart-Thomas and Nédélec Elements on Anisotropic Meshes

Ariel L. Lombardi *

Abstract

In this talk we consider estimates for the Raviart-Thomas [6, 7] and Nédélec [4] interpolation operators of any order on tetrahedral meshes with arbitrarily narrow elements. More precisely, we obtain interpolation error estimates on meshes satisfying two different geometrical restrictions, namely, the "regular vertex property" (RVP) and the "maximum angle condition" (MAC) [1]. These two conditions allow for meshes that not satisfy the standard shape regularity assumption [2], which appear naturally, for instance, in the approximations of boundary layers. The RVP is a stronger condition than the MAC.

The estimates are obtained in each element of the mesh paying attention to the dependence of the constants on the geometrical properties of the element. The global estimate is obtained adding the individual ones. Then we are interested in two kind of estimates: (1) estimates valid uniformly for all elements having a particular geometrical property, and (2) anisotropic estimates also valid uniformly for some class of elements. We say that an estimate is of anisotropic type when in front each derivative appear the lengths of the element in the corresponding directions.

Related results were previously obtained, for instance, in [3] for Raviart-Thomas interpolation in two dimensions or in three dimensions under the RVP, and in [5] for the Nédélec interpolation of lowest degree.

For the Raviart-Thomas interpolation we obtain error estimates valid uniformly under the MAC, but anisotropic estimates can be proved only under the RVP. This is not the case for the Nédélec interpolation, for which we can obtain anisotropic error estimates also under the MAC.

These results are partly joint work with Thomas Apel, Gabriel Acosta, and Ricardo G. Durán.

References

[1] Acosta, G., Durán, R.G., The maximum angle condition for mixed and non conforming elements: Application to the Stokes equations SIAM J. Numer. Anal. 37, 18-36, 2000.

[^0][2] Ciarlet, P.G., The Finite Element Method for Elliptic Problems, North Holland, 1978.
[3] Durán, R. G., Lombardi, A. L., Error estimates for the Raviart-Thomas interpolation under the maximum angle condition, SIAM J. Numer. Anal., 46, 1442-1453, 2008.
[4] Nédélec, J.C., Mixed Finite Elements in \mathbb{R}^{3}, Numer. Math. 35 (3), 315-341, 1980.
[5] Nicaise, S., Edge elements on anisotropic meshes and approximation of the Maxwell equations, SIAM J. Numer. Anal. 39 (3), pp. 784-816.
[6] Raviart, P.A., Thomas, J.M., A mixed finite element method for second order elliptic problems, Mathematical Aspects of the Finite Element Method (I. Galligani, E. Magenes, eds.), Lectures Notes in Math. 606, Springer Verlag, 1977.
[7] Thomas, J.M., Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes, Thèse d'Etat, Université Pierre et Marie Curie, Paris, 1977.

[^0]: *Universidad Nacional de General Sarmiento, Universidad de Buenos Aires and CONICET, Argentina, e-mail: aldoc7@dm.uba.ar

