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1. Introducción

El Cuarto Encuentro de Análisis Numérico de Ecuaciones Diferenciales Parciales
ha sido organizado en conferencias secuenciales de 45 y 30 minutos de duración (40 y
25 minutos de exposición, respectivamente, y 5 minutos para preguntas y comentarios).
Todas las charlas se llevarán a cabo en el Auditorio Ninoslav Bralić de la Facultad de
Matemáticas.

En las páginas siguientes se detalla primero la programación correspondiente y luego se
incluyen los resúmenes de cada uno de los trabajos (en orden alfabético, según autores).
Cuando hay más de un autor, aquel que aparece subrayado corresponde al expositor.

Los organizadores expresamos nuestro agradecimiento a los auspiciadores que se indican a
continuación, los cuales han aportado gran parte de los recursos necesarios para el financia-
miento de este evento:

Centro de Modelamiento Matemático (CMM) de la Universidad de Chile,

Departamento de Ingenieŕıa Matemática de la Universidad de Concepción, y

Facultad de Matemáticas de la Pontificia Universidad Católica de Chile.

Igualmente, extendemos nuestro reconocimiento y gratitud a todos los expositores, quienes
han hecho posible la realización de Santiago Numérico I.

Comité Organizador

Santiago, Enero de 2009
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2. Miércoles, 14 de Enero

8.30-9.15 INSCRIPCIÓN

9.15-9.30 BIENVENIDA DEL DECANO

[Moderador: N. HEUER]

9.30-10.15 L.F. Demkowicz: hp-adaptive finite elements for multiphysics wa-
ve propagation problems.

10.15-10.45 T. Tran, D. Pham: Efficient meshless methods for pseudodiffe-
rential equations on the sphere.

10.45-11.15 COFFEE BREAK

11.15-11.45 G.N. Gatica, G.C. Hsiao, S. Meddahi: A coupled mixed finite
element method for the interaction problem between electromagnetic
field and elastic body.

11.45-12.15 M. Bendahmane, R. Bürger, R. Ruiz: Convergence of a finite
volume method for cardiac propagation.

12.15-12.45 F.-J. Sayas: BEM-FEM coupling: back to the beginning.

12.45-15.00 ALMUERZO

[Moderador: S. MEDDAHI]

15.00-15.30 R. Bürger, K.H. Karlsen, J.D. Towers: An entropy inequa-
lity for a class of multi-species kinematic flow models with discon-
tinuous flux.

15.30-16.00 T.P. Barrios, J.M. Cascón, G.C. Garćıa: An a posteriori
error analysis for the stream function and vorticity formulation
of the Stokes problem.

16.00-16.30 A.L. Lombardi: Estimates for Raviart-Thomas and Nédélec ele-
ments on anisotropic meshes.

16.30-17.00 COFFEE BREAK

17.00-17.30 A. Bespalov, N. Heuer: A new p-interpolation operator for
Raviart-Thomas elements and its application to the convergence
analysis of the high order BEM for electro-magnetic scattering.

17.30-18.00 J.C. de los Reyes, S. González: Numerical simulation of two-
dimensional Bingham fluid flow by semismooth Newton methods.

18.00-18.30 G.N. Gatica, G.C. Hsiao, S. Meddahi: A residual-based a pos-
teriori error estimator for a two-dimensional fluid-solid interaction
problem.

19.30 COCKTAIL DE BIENVENIDA
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3. Jueves, 15 de Enero

[Moderador: F.-J. SAYAS]

9.30-10.15 R. Durán, F. López-Garćıa: Existence, uniqueness and appro-
ximation of the Stokes equations in some non-Lipschitz domains.

10.15-10.45 R.A. Araya, P. Venegas: An a posteriori error estimator for a
unsteady advection-diffusion equation.

10.45-11.15 COFFEE BREAK

11.15-11.45 J.C. de los Reyes, C. Meyer, B. Vexler: Finite element
error analysis for state-constrained optimal control of the Stokes
equations.

11.45-12.15 M. Durán, I. Muga, J.-C. Nédélec: A radiation condition for
time-harmonic elastic waves in half-spaces with free boundary.

12.15-12.45 I.S. Pop, M. Sepúlveda: Error estimates for the finite volume
discretization of the porous medium equation.

12.45-15.00 ALMUERZO

[Moderador: R. BÜRGER]

15.00-15.30 M. Maischak: Mixed FEM-BEM coupling for nonlinear transmis-
sion problems with Signorini contact.

15.30-16.00 R. Bürger, A. Coronel, M. Sepúlveda: Numerical methods
for an inverse problem in scalar conservation laws.

16.00-16.30 M. de Buhan, P. Frey: Modelling and simulation of the viscoe-
lastic behavior of brain structures: preliminary results.

16.30-17.00 COFFEE BREAK

17.00-17.30 M. Astorino, F. Chouly, M.A. Fernández: An added-mass
free semi-implicit coupling scheme for fluid-structure interaction.

17.30-18.00 M.A. Barrientos, M.E. Mellado: A domain decomposition
method for linear exterior boundary value problems in elasticity.

18.00-18.30 E. Hernández, E. Otárola: Superconvergence scheme of a lo-
cking free FEM in a Timoshenko optimal control problem.

20.00 CENA DE CAMARADERÍA (QUINCHO)
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4. Viernes, 16 de Enero

[Moderador: R. ARAYA]

9.30-10.15 P. Jimack: Moving mesh finite element methods for the adaptive
solution of transient PDEs with moving boundaries.

10.15-10.45 G.R. Barrenechea, L.P. Franca, C. Harder, F. Valentin:
Pressure projection methods arising from an enriched finite element
approach.

10.45-11.15 COFFEE BREAK

11.15-11.45 T.P. Barrios, R. Bustinza: A stabilized mixed discontinuous
Galerkin formulation: a priori and a posteriori error analyses.

11.45-12.15 S. Gutiérrez, J. Mura: About computing the nonlinear inter-
action between weakly converging sequences and its influence in
optimal design and nonlinear elasticity.

12.15-12.45 R. Durán, R. Rodŕıguez, F. Sanhueza: Computation of the
vibration modes of a Reissner-Mindlin laminated plate.

12.45-15.00 ALMUERZO

[Moderador: G. GATICA]

15.00-15.30 S. Valarmathi, J.J.H. Miller: A parameter-uniform finite dif-
ference method for a singularly perturbed multiscale linear dynami-
cal system.

15.30-16.00 C. Jerez-Hanckes, J.-C. Nédélec: Hybrid boundary elements
scheme for modeling flat surfaces in R3.

16.00-16.30 E.G. Reyes: Explicit solutions to nonlinear partial differential
equations via nonlocal symmetries.

16.30-17.00 COFFEE BREAK

17.00-17.30 G.N. Gatica, R.E. Oyarzúa, F.-J. Sayas: A residual-based a
posteriori error estimator for a fully mixed formulation of the Stokes-
Darcy coupled problem.

17.30-18.00 M. Durán, M. Maturana, J.-C. Nédélec, S. Ossandón: On
the calculation of Maxwell’s eigenfrequencies using integral equa-
tions for a buried landmine.

18.00-18.30 M. Healey, N. Heuer: Mortar boundary elements.

18.30 CIERRE
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5. Resúmenes
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An a posteriori error estimator for a unsteady
advection-diffusion equation∗

Rodolfo Araya† Pablo Venegas‡

Abstract

In this work we introduce an a posteriori error estimates for the unsteady advection-
diffusion-reaction equation in two space dimensions. For the discretization we use
backward Euler in time, and continuous, piecewise linear triangular finite elements in
space together with a stabilized scheme. The error is bounded above and below by
an explicit error estimator based on the residual. Numerical results are presented for
uniform triangulations and constant time steps. The quality of our error estimator is
discussed. An adaptive algorithm is then proposed and numerical results demonstrate
the efficiency of our approach.

References

[1] Bergam, A., Bernardi, C. and Mghazli, Z., A posteriori analysis of the finite
element discretization of some parabolic equations. Math. Comp., vol. 74, 251, pp. 1117–
1138, (2004).

[2] Picasso, M., An adaptive finite element algorithm for a two-dimensional parabolic prob-
lem. Comput. Meth. Appl. Mech. Eng.,vol. 167, pp. 223–237, (1998).

[3] Verfürth, R., A posteriori error estimates for nonlinear problems: Lr(0, T ; W 1,ρ(Ω))-
error estimates for finite element discretizations of parabolic equations. Numer. Meth. for
PDE, vol. 14, pp. 487–518, (1998).

∗This research was partially supported by FONDAP and BASAL projects CMM, Universidad de Chile,
and by Centro de Investigación en Ingenieŕıa Matemática (CI2MA), Universidad de Concepción.

†CI2MA and Departamento de Ingenieŕıa Matemática, Facultad de Ciencias F́ısicas y Matemáticas, Uni-
versidad de Concepción, Casilla 160-C, Concepción, Chile, e-mail: raraya@ing-mat.udec.cl

‡Departamento de Ingenieŕıa Matemática, Facultad de Ciencias F́ısicas y Matemáticas, Universidad de
Concepción, Casilla 160-C, Concepción, Chile, e-mail: pvenegas@ing-mat.udec.cl
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An added-mass free semi-implicit coupling scheme
for fluid-structure interaction ∗

Matteo Astorino † Franz Chouly ‡ Miguel A. Fernández §

Abstract

We propose a semi-implicit coupling scheme for the numerical simulation of fluid-
structure interaction systems involving a viscous incompressible fluid. The scheme is
stable irrespectively of the so-called added-mass effect (fluid and solid densities which
are close and/or domain which is slender) [5]. Moreover, it allows for conservative
time-stepping within the structure. The efficiency of the scheme is based on the explicit
splitting of the viscous effects and geometrical/convective non-linearities, through the
use of the Chorin-Temam projection scheme within the fluid [6]. Stability relies on
the implicit treatment of the pressure stresses and on the Nitsche’s treatment of the
viscous coupling [2,3,4]. The numerical stability of the scheme is proved theoretically
through a priori energy estimation [1]. Numerical results in two and three dimensions
illustrate the stability and efficiency of the scheme as well as its potentiality in the
context of blood flow simulations [7].

References

[1] Astorino M., Chouly F. and Fernández M.A., An added-mass free semi-implicit
coupling scheme for fluid-structure interaction. C. R. Math. Acad. Sci. Paris, In Review
(2008).

[2] Becker R., Hansbo P. and Stenberg R., A finite element method for domain
decomposition with non-matching grids. M2AN Math. Model. Numer. Anal., vol. 37, pp.
209-225 (2003).

∗This research was partially supported by INRIA through the CardioSense3D project and by the ANR
agency through the PITAC project.

†INRIA, REO team, Rocquencourt BP 105, F–78153 Le Chesnay Cedex, France,
e-mail: matteo.astorino@inria.fr

‡INRIA, REO team, Rocquencourt BP 105, F–78153 Le Chesnay Cedex, France,
e-mail: franz.chouly@inria.fr

§INRIA, REO team, Rocquencourt BP 105, F–78153 Le Chesnay Cedex, France,
e-mail: miguel.fernandez@inria.fr
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[3] Burman E. and Fernández M.A., Stabilized explicit coupling for fluid-structure in-
teraction using Nitsche’s method, C. R. Math. Acad. Sci. Paris, vol. 345, pp. 467-472
(2007).

[4] Burman E. and Fernández M.A., Stabilization of explicit coupling in fluid-structure
interaction involving fluid incompressibility, INRIA Research Report RR-6445 (2008).

[5] Causin P., Gerbeau J.-F. and Nobile F., Added-mass effect in the design of par-
titioned algorithms for fluid-structure problems. Comput. Methods Appl. Mech. Engrg.,
vol. 194, pp. 4506-4527 (2005).

[6] Fernández M.A., Gerbeau J.F. and Grandmont C., A projection semi-implicit
scheme for the coupling of an elastic structure with an incompressible fluid, Int. J. Num.
Meth. Engrg., vol. 69, pp. 794-821 (2007).

[7] Quarteroni A., Formaggia, L. and Veneziani A. (editors), Cardiovascular Math-
ematics, Ch. 9. Algorithms for fluid-structure interaction problems. Springer Verlag. In
preparation.
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Pressure projection methods arising from an
enriched finite element approach∗

Gabriel R. Barrenechea † Leopoldo P. Franca ‡

Christopher Harder § Frederic Valentin ¶

Abstract

To make some of the simplest and desirable pair of spaces inf-sup stable for the Stokes
and the Darcy models, namely the P1/P0, P1/P1 and P1/P dis

1 elements, this work
proposes a Petrov-Galerkin strategy relied on velocity and pressure enhanced spaces
(see [1, 2, 3, 4] for related results). The enriching functions turn out to be the solu-
tions of local mixed problems at element level driven by residuals and spurious modes
with degree of freedom fixed by the original pair of elements. Having incorporates
the element wise contribution the now stable methods recover some of the pressure
projection methods recently proposed in [5, 6]. In addition, we take advantage of the
enriched framework to make methods local mass conservative and super convergent for
some particular meshes. Numerical tests infer achieved theoretical results and validate
optimal error estimates.

References

[1] Araya, R. and Barrenechea, G.R. and Valentin, F., Stabilized finite element
methods based on multiscale enrichment for the Stokes problem, SIAM J. Numer. Anal.,
vol. 44, 1, pp. 322–348, (2006).

[2] Allendes, A., Barrenechea, G.R., Hernández, E., Valentin, F., A two-level
enriched finite element method for a mixed problem, LNCC Research Report, (2008).

∗This research was supported by CNPq, CAPES and FAPERJ/Brazil and NSF/USA
†Department of Mathematics, University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH, UK,

e-mail: grb@maths.strath.ac.uk
‡Department of Mathematical Sciences, University of Colorado at Denver, P.O. Box 173364, Campus Box

170 Denver, Colorado 80217-3364, USA, e-mail: leo.franca@cudenver.edu
§Department of Mathematical Sciences, University of Colorado at Denver, P.O. Box 173364, Campus Box

170 Denver, Colorado 80217-3364, USA, e-mail: charder@cudenver.edu
¶LNCC, Applied Mathematics Department, Av. Getulio Vargas 333, 25651-075 Petrópolis - RJ, Brazil,

e-mail: valentin@lncc.br
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[3] Barrenechea, G.R., Franca, L.P. and Valentin, F., A symmetric nodal conser-
vative finite element method for the Darcy equation, LNCC Research Report, (2008).

[4] Barrenechea, G.R., Franca, L.P. and Valentin, F., A Petrov-Galerkin enriched
method for the Darcy equation, Comput. Methods Appl. Mech. Engrg., vol. 25, 6, pp.
1237–1271, (2007).

[5] Bochev, P. and Dohrmann, C. R. and Gunzburger, M. D. Stabilization of low-
order mixed finite elements for the Stokes equations, SIAM J. Numer. Anal., vol. 44, 1,
pp. 82–101, (2006).

[6] Burman, E., Pressure projection stabilizations for Galerkin approximations of Stoke’
and Darcy’s problem, Numerical Methods for Partial Differential Equations, vol. 24, pp.
127–143, (2008).
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A domain decomposition method for linear exterior
boundary value problems in elasticity∗

Mauricio A. Barrientos † Mario E. Mellado ‡

Abstract

In this paper we present new domain decomposition methods for solving linear exterior
boundary value problems in elasticity in the plane. Our method is based on the com-
bination of finite element method and Dirichlet–to–Neumann mapping, given in terms
of Fourier series, which gives the exact boundary condition on an artificial boundary,
to transform the exterior problem into an equivalent mixed boundary value problem
in a bounded domain. As a model problem we consider the exterior boundary value
problem for the Lamé system. The domain is decomposed into a finite number of sub-
domains and the Dirichlet data on the interfaces is introduced as the unknown of the
associated discrete Steklov–Poincaré problem. Next, we use either a preconditioned
Richardson–type method or the preconditioned conjugate gradient method by intro-
ducing adjustable Dirichlet–Robin–type preconditioners to solve the problem, which
yields iteration–by–subdomains algorithms well suited for parallel computations and
they can be naturally implemented on a parallel computing environment. A complete
discrete analysis proves that our algorithms have an independent convergence of the
stepsize of the mesh.

References

[1] M. A. Barrientos and M. E. Mellado, Steklov-Poincaré operators and domain
decomposition for solving linear exterior boundary value problems. Submitted.

[2] H. Fujita, N. Saito, T. Suzuki, Studies in Mathematics and its Applications, 30,
Operator Theory and Numerical Methods. Elsevier Science B.V., 2001.

∗Work partially suported by Fondecyt Chile through the project No. 1070952
†Instituto de Matemáticas, Pontificia Universidad Católica de Valparáıso, Blanco Viel 596, Valparáıso,

Chile, e-mail: mauricio.barrientos@ucv.cl
‡Centro de Investigación Cient́ıfico Tecnológico para la Mineŕıa (CICITEM), Avenida Universidad de

Antofagasta 02800, Antofagasta, Chile, e-mail: mmellado@uantof.cl
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[3] G.N. Gatica and G.C. Hsiao, The uncoupling of boundary integral and finite element
methods for nonlinear boundary value problems. Journal of Mathematical Analysis and
Applications, vol. 189, 2, pp. 442–461, 1995.

[4] G. N. Gatica, E. C. Hernández and M. E. Mellado, A domain decomposition
method for linear exterior boundary value problems. Applied Mathematics Letters, vol.
11, 6, pp. 1–9, (1998).

[5] H. Han and X. Wu, The approximation of the exact boundary conditions at an artificial
boundary for linear elastic equations and its applications. Mathematics of Computation,
vol. 59, pp. 21–37, (1992).

16



A stabilized mixed discontinuous Galerkin formulation:
a priori and a posteriori error analyses∗

Tomás P. Barrios† Rommel Bustinza‡

Abstract

In this talk we present an a priori and a posteriori error analysis of a stabilized mixed
discontinuous Galerkin formulation for elliptic problems. Our approach requires the
introduction of suitable Galerkin least-squares terms (arising from constitutive and
equilibrium equations), which allow us to look for the flux unknown in the local Raviart-
Thomas space. The unique solvability of the discrete scheme is established avoiding the
introduction of lifting operators and allow us to conclude that the rate of convergence
of the error, measured in an appropriate norm, is optimal respect to the h−version.
Furthermore, we apply Helmholtz decomposition to obtain a reliable and efficient a
posteriori error estimate for our approach. Finally, we present several numerical exper-
iments, showing the robustness of the method as well as the theoretical properties of
the estimator, thus confirming the capability of the corresponding adaptive algorithms
to localize the inner layers, the singularities and/or the large stress regions of the exact
solution.

References

[1] D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini: Unified analysis of dicon-
tinuous Galerkin methods for elliptic problems. SIAM Journal on Numerical Analysis,
vol. 39, 5, pp. 1749-1779, (2001).

[2] T.P. Barrios and R. Bustinza: An augmented discontinuous Galerkin method for
elliptic problems. Comptes Rendus de l’Academie des Sciences, Series I, vol. 344, pp.
53-58, (2007).

∗This research was partially supported by FONDECYT Grants 1080168 and 11060014, by FONDAP and
BASAL projects CMM, Universidad de Chile, and by Centro de Investigación en Ingenieŕıa Matemática
(CI2MA), Universidad de Concepción.

†Departamento de Matemática y F́ısica Aplicadas, Facultad de Ingenieŕıa, Universidad Católica de la
Sant́ısima Concepción, Casilla 297, Concepción, Chile, e-mail: tomas@ucsc.cl

‡CI2MA and Departamento de Ingenieŕıa Matemática, Facultad de Ciencias F́ısicas y Matemáticas, Uni-
versidad de Concepción, Casilla 160-C, Concepción, Chile, e-mail: rbustinz@ing-mat.udec.cl
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[3] T.P. Barrios and R. Bustinza: A priori and a posteriori error analyses of an aug-
mented Galerkin discontinuous formulation. IMA Journal of Numerical Analysis, to ap-
pear.

[4] T.P. Barrios and R. Bustinza: An augmented DG scheme for porous media equa-
tions. Numerical Mathematics and Advanced Applications: Proceedings ENUMATH
2007, K. Kunisch, G. Of and O. Steinbach, eds, pp. 315-322, Springer Verlag, 2008.

[5] T.P. Barrios and R. Bustinza: An a posteriori error analysis of an augmented
discontinuous Galerkin formulation for Darcy flow. Preprint 08-18, Departamento de
Ingenieŕıa Matemática, Universidad de Concepción, (2008).

[6] R. Becker, P. Hansbo and M.G. Larson: Energy norm a posteriori error estima-
tion for discontinuous Galerkin methods. Computer Methods in Applied Mechanics and
Engineering, vol. 192, pp. 723-733, (2003).
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An a posteriori error analysis for the stream function
and vorticity formulation of the Stokes Problem∗

Tomás P. Barrios † José M. Cascón ‡ Galina C. Garćıa §

Abstract

In this paper we describe an a posteriori error estimator of the finite element solution
for Stokes problem in stream function and vorticity formulation. We derive a reliable
and efficient a posteriori error estimator. Our approach introduce an appropriate dual
problem that allow us to prove efficiency in natural norms. In this sense, it can be seen
as an extension of the applicability of the error indicator developed in [1] to the stan-
dard stream function-vorticity formulation. We present several numerical experiments
confirming the theoretical properties of the estimator, and illustrating the capability of
the corresponding adaptive algorithm to localize the singularities and the large stress
regions of the solution. Finally, we apply the adaptive strategy to a large-scale ocean
circulation model to reduce the spurious oscillations which arise when convective terms
are dominant.

References

[1] M. Amara, M. Ben Younes and Bernardi, C., Error indicators for the Navier-
Stokes equations in stream function and vorticity formulation. Numerische Mathematik,
vol. 80, pp. 181-206, (1998).

[2] V. Girault and P.-A. Raviart, Finite Element Methods for Navier Stokes Equations:
Theory and Algorithms. Springer-Verlang, Berlin, 1986.

∗This research was partially supported by FONDECYT Grants No. 11060014 and 1080244 (Chile) and
Grant CGL2008-06003-C03-03/CLI (Spain).

†Departamento de Matemática y F́ısica Aplicada, Facultad de Ingenieŕıa, Universidad Católica de la
Sant́ısima Concepción, Casilla 297, Concepción, Chile, e-mail: tomas@ucsc.cl

‡Departamento de Matemática, Universidad de Salamanca, 37008, Salamanca, España, e-mail:
casbar@usal.es

§Departamento de Matemáticas y Ciencia de la Computación, Facultad de Ciencia, Universidad de San-
tiago, Casilla 307, Correo 2, Santiago, Chile, e-mail: galina@fermat.usach.cl
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Convergence of a finite volume method
for cardiac propagation∗

Mostafa Bendahmane † Raimund Bürger ‡ Ricardo Ruiz §

Abstract

A finite volume method for solving the monodomain and bidomain models for the elec-
trical activity of myocardial tissue is presented. These models consist of a parabolic
PDE and a system of a degenerate parabolic and an elliptic PDE, respectively, for
certain electric potentials, coupled to an ODE for the gating variable. Existence and
uniqueness of the approximate solution is proved. It is also shown that the scheme
converges to the corresponding weak solution for the monodomain model, and also
for the bidomain equations in the special case of fibers aligned with the axis. Nu-
merical examples in two and three space dimensions indicate experimental rates of
convergence slightly above first order for both models. In addition, since typical solu-
tions of the studied models exhibit wavefronts with steep gradients, the finite volume
scheme is enriched by a fully adaptive multiresolution method, whose basic purpose is
to concentrate computational effort on zones of strong variation of the solution. Time
adaptivity is achieved by two alternative devices, namely locally varying time step-
ping and a Runge-Kutta-Fehlberg-type adaptive time integration. Finally, the optimal
choice of the threshold for discarding non-significant information in the multiresolution
representation of the solution is addressed.
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A new p-interpolation operator for Raviart-Thomas
elements and its application to the convergence analysis
of the high-order BEM for electro-magnetic scattering∗

Alex Bespalov † Norbert Heuer ‡

Abstract
Interpolation operators (or projectors onto corresponding polynomial spaces) are fre-
quently used in the analysis of discrete methods for time-harmonic Maxwell equations.
In particular, a proper choice of these operators is critical for the proof of the discrete
compactness property which, together with an appropriate approximability condition,
implies the convergence of finite element methods (FEM) for Maxwell eigenvalue prob-
lems. When the problem of electro-magnetic scattering (modelled by Maxwell’s equa-
tions in the exterior domain) is reformulated as a boundary integral equation on the
surface of the scatterer, one can apply the boundary element method (BEM) for its ap-
proximate solution. The electric field integral equation (EFIE) is one of many possible
integral formulations. It is usually discretised by the div-conforming Galerkin BEM
based on Raviart-Thomas spaces. Then, as in the FEM for Maxwell’s equations, an
appropriate interpolation operator is needed to prove convergence of boundary element
approximations for the EFIE. However, the existing operators do not easily fit the the-
oretical framework of the BEM, which is based on negative order Sobolev spaces. This
is especially true for high-order methods (p- and hp-BEM).

In this talk we introduce a new H̃−1/2(div)-conforming p-interpolation operator for
Raviart-Thomas elements. This operator has a number of useful properties related to
the high-order BEM on piecewise smooth surfaces:

– it assumes sufficiently low Hr ∩ H̃−1/2(div)-regularity (r > 0);

– it commutes with the H̃−1/2-projector;

– it is quasi-stable with respect to polynomial degrees.

Then we apply this interpolation operator to prove convergence of the hp-version of
the BEM for the EFIE on piecewise plane (open or closed) surfaces discretised by
quasi-uniform meshes.
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Numerical methods for an inverse problem
in scalar conservation laws ∗

Raimund Bürger † Anibal Coronel ‡ Mauricio Sepúlveda†

Abstract

This contribution is concerned with the numerical solution of flux identification problem
in scalar conservation laws where the solution in a fixed time is known. This inverse
problem is formulated in a variational setting by introducing an objective function
which compares, in the L2-norm, the simulation and the observation profiles. We
consider two numerical methodologies to evaluate the exact gradient of the discrete
objective function: the sensitivity equation method and the adjoint equation method.
We comment the consequence of shock formation in the differentiability of the cost
function in both continuous gradient formulations. In the case of the adjoint sensitivity
analysis we interpret the continuous adjoint equation in the sense of reversible solutions
and we prove the convergence of the exact gradient to an element of the subdifferential
of the cost function. Although, the numerical examples are focus on the context of
well-known phenomenological sedimentation model, the identification method can be
applied to other one-dimensional hyperbolic models.
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An entropy inequality for a class of multi-species
kinematic flow models with discontinuous flux∗

Raimund Bürger† Kenneth H. Karlsen‡ John D. Towers§

Abstract

We study a system of conservation laws that models multi-species kinematic flow mod-
els with an emphasis on models of multiclass traffic flow [1] and of the creaming of
oil-in-water dispersions [6]. The flux is allowed to have a spatial discontinuity which
models abrupt changes of road surface conditions or of the cross-sectional area in a
settling vessel. For this system, an entropy inequality is proposed that singles out the
correct solution at the interface. It is shown that limit solutions generated by a numer-
ical scheme the authors recently proposed [2] satisfy this entropy inequality. It is also
shown that limit solutions are entropy admissible, and in the genuinely nonlinear case,
satisfy the usual Lax condition for a shock located away from the interface. We present
an improvement to our scheme, involving a special interface flux that is activated only
at a few grid points where the flux discontinuity is located. Numerical experiments
indicate that this interface flux essentially eliminates overshoots that are sometimes
present at the interface with our original scheme. We show that the scheme, with or
without the interface fix, preserves a natural invariant region. Related earlier work
includes [3, 5, 7]. This contribution is based on work under preparation [4].
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versidad de Concepción, Casilla 160-C, Concepción, Chile, e-mail: rburger@ing-mat.udec.cl

‡Centre of Mathematics for Applications (CMA), University of Oslo, P.O. Box 1053, Blindern, N–0316
Oslo, Norway, e-mail: kennethk@math.uio.no

§MiraCosta College, 3333 Manchester Avenue, Cardiff-by-the-Sea, CA 92007-1516, USA, e-mail:
john.towers@cox.net

27
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Modelling and simulation of the viscoelastic behavior
of brain structures: preliminary results∗

Maya de Buhan † Pascal Frey ‡

Abstract
We consider the problem of modelling the deformation of brain structures for which
the nonlinear viscoelastic behavior has been established several years ago by [2]. Based
on the thorough mathematical analysis of a model with internal variable suggested by
[1], we focus here on its implementation in three dimensions. The problem associates a
nonlinear PDE endowed with an incompressibility condition and an ODE describing the
time evolution of the internal variable. The time discretization is based on an implicit
Euler scheme and the spatial discretization involves P2 Lagrange finite elements. A
linearized version of the resulting system is obtained by a Newton method and is
solved by an Augmented Lagrangian technique. Computational results on complex
domains will be provided to emphasize the adaptation on the geometric properties of
the domain boundaries. Provided biophysical coefficients are available, these results
aim to be confronted to experimental results in order to validate the underlying model.
Furthermore, a coupling of this model with a plasticity model can be envisaged, possibly
in other applications.
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Numerical simulation of two-dimensional Bingham
fluid flow by semismooth Newton methods∗

Juan Carlos De los Reyes† Sergio González‡

Abstract

This work is devoted to the numerical simulation of two-dimensional stationary Bing-
ham fluid flow by semi-smooth Newton methods. Bingham fluids are visco-plastic ma-
terials which behave like incompressible fluids in the regions where the stress reaches a
given yield and like solids in the regions where the stress remains below that threshold.
The mathematical models for such materials involve the constituent law for viscous in-
compressible fluids, with an extra stress tensor component modeling the visco-plastic
effects. We are concerned with Bingham fluid flow in a given domain Ω ⊂ R2, con-
sidering non-homogeneous Dirichlet and stress-free boundary conditions. We analyze
the modeling elliptic variational inequality of the second kind as an equivalent mini-
mization problem and, using Fenchel’s duality, we obtain an optimality system which
characterizes the primal and dual solutions. Since the solution to the dual problem is
not unique, a family of Tikhonov regularized problems is introduced and the conver-
gence of the regularized solutions to the original one is studied. For the discretization
of each regularized optimality system, a finite element method with (cross-grid P1)−Q0

elements is utilized. The chosen pair is known to satisfy the Ladyzhenskaya - Babuška -
Brezzi condition and allows also to obtain a direct relation between the discrete primal
and dual variables. For the solution of the resulting system of nonsmooth equations, we
propose a semismooth Newton algorithm. Using an additional relaxation of the incom-
pressibility condition a modified reduced system matrix is constructed and a descent
direction is obtained from each semismooth Newton iteration. The local superlinear
convergence of the method is also proved. Finally, several numerical experiments are
carried out in order to investigate the behavior and efficiency of the method.
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Finite element error analysis for state-constrained
optimal control of the Stokes equations

Juan C. de los Reyes ∗ Christian Meyer † Boris Vexler ‡

Abstract

An optimal control problem for 2d and 3d Stokes equations is investigated with point-
wise inequality constraints on the state and the control. The paper is concerned with
the full discretization of the control problem allowing for different types of discretization
of both the control and the state. For instance, piecewise linear and continuous approx-
imations of the control are included in the present theory. Under certain assumptions
on the L∞-error of the finite element discretization of the state, error estimates for the
control are derived which can be seen to be optimal since their order of convergence
coincides with the one of the interpolation error. The assumptions of the L∞-finite-
element-error can be verified for different numerical settings. Finally the results of two
numerical experiments are presented.
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hp-adaptive finite elements for multiphysics
wave propagation problems

Leszek F. Demkowicz ∗

Abstract

I will attempt to combine an overview of our experience with hp finite elements and the
automatic hp-adaptivity for wave propagation problems, with a presentation of new
research topics focusing on multiphysics coupled problems. The first part of the talk will
focus on fundamentals of hp-discretizations of wave propagation problems: acoustics,
elasticity and electromagnetics. We will shortly discuss the issues of stability and
approximability for time-harmonic problems emphasizing the difference between the
elliptic and Maxwell problems. I will review the main results of the theory of projection-
based interpolation and discuss its importance in both the theoretical (proof of discrete
compactness for hp methods) and practical (automatic hp-adaptivity) context. This
part of the presentation will deliver “punch lines” only, and I will finish it by “flashing”
a few representative examples. The second part of the presentation will address our
current work on multiphysics coupled-problems. Using a coupled acoustics/elasticity
problem, I will outline new challenges that we have faced when generalizing the hp
methodology to this class of problems. This will include a discussion on hp data
structures, use of fractional Sobolev norms, and both energy- and goal-driven automatic
hp-adaptivity algorithms. The discussion will be illustrated with numerical solutions
of 3D axisymmetric problems.
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On the calculation of Maxwell’s eigenfrequencies using
integral equations for a buried landmine∗

Mario Durán † Milko Maturana ‡

Jean-Claude Nédélec § Sebastián Ossandón ¶

Abstract
A 3-D mathematical model, using the integral equation framework, of the time-harmo-
nic Maxwell’s equations has been developed for research studies of buried penetrable
targets in a dispersive isotropic soil. An efficient numerical method is developed to
calculate precisely the Maxwell’s eigenfrequencies of buried landmines, located in a
given high frequency interval. Functions are evaluated only in the boundary of the
domain, so very fine discretizations may be chosen to obtain high eigenfrequencies. We
discuss the stability and convergence of the proposed method. Finally we show some
numerical results, which make evident the effectiveness and relevance of the proposed
numerical method.
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A radiation condition for time-harmonic elastic waves
in half-spaces with free boundary∗

Mario Durán † Ignacio Muga ‡ Jean-Claude Nédélec §

Abstract

In this work we deduce an explicit Sommerfeld-type radiation condition able to prove
uniqueness for the problem of outgoing wave propagation in isotropic elastic half-spaces
with free boundary condition. The expression is obtained by a rigorous asymptotic
analysis of the Green’s function associated with this problem. Observe that this is an
exterior problem with unbounded frontier. The main difficulty is that the free boundary
condition allows the propagation of Rayleigh waves guided by the unbounded surface.
Hence, we mainly observe three types of waves in the far field expansion (each one with
its own velocity) : the pressure wave, the shearing wave and the Rayleigh or
surface wave. Thus, the outgoing wave behavior needs to be described by a radiation
condition different from the usual Kupradze’s condition [2], which is used in exterior
problems with bounded boundaries (where we only see pressure and shearing waves in
the far field). This is an extension to the elastic case of the previous result in [1].
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Existence, uniqueness and approximation of the Stokes
equations in some non-Lipschitz domains∗

Ricardo G. Durán† Fernando López-Garćıa‡

Abstract

Theoretical and numerical analysis of elliptic problems are strongly based on several
results in the theory of Sobolev spaces which are valid for Lipschitz domains (trace
theorems, Korn inequality, inf-sup conditions, etc.) On the other hand, it is known
that for some non-Lipschitz domains many of these results are not valid. In this talk
we consider a particular class of non-Lipschitz domains, namely, domains with external
cusps (for example the complement of two tangent circles or spheres). This kind of
domains can be viewed as a particular case of Hölder-α domains. First we recall our
previous works [1, 2] on the analysis and approximation of the Poisson equation in this
kind of domains. Second, we present new results for the Stokes equations. As it is
well known, existence, uniqueness and stability of numerical solutions follows from the
inf-sup condition and its discrete counterpart. We show by an elementary example that
the standard inf-sup condition does not hold for the domains that we are considering.
Therefore, a natural question is whether some weaker inf-sup condition can be proved
for these domains. To give a positive answer to this question we work with weighted
Sobolev norms. We present a result for the general class of Hölder-α domains [3] and
a sharper result for particular domains with external cusps. These generalized inf-sup
conditions allow us to apply the general theory of saddle point problems to the analysis
of the Stokes equations in these domains.
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Hölder-α, submitted to Math. Mod. Meth. Appl. Sci..

42



Computation of the vibration modes of a
Reissner-Mindlin laminated plate

Ricardo G. Durán∗ Rodolfo Rodŕıguez† Frank Sanhueza‡

Abstract

This work deals with the computation of the vibration modes of a laminated plate mod-
eled by the Reissner-Mindlin equations [1], by using the DL3 elements for the bending
terms and linear triangular finite elements for the in-plane displacements [2, 4]. We
apply the general approximation theory for spectral problems and, under appropriate
assumptions, we obtain optimal order error estimates, including a double order for the
vibration frequencies. The estimates are independent of the thickness of the laminated
plate, which leads to the conclusion that the method is locking-free [3]. Numerical
tests are reported to assess the performance of the method.
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Approximation of the vibration modes of a plate by Reissner-Mindlin equations, Math.
Comp., 68 (1999) 1447–1463.
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‡Departamento de Ingenieŕıa Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
Partially supported by CONICYT (Chile)

43



44



A residual-based a posteriori error estimator for a
two-dimensional fluid-solid interaction problem∗

Gabriel N. Gatica † George C. Hsiao ‡ Salim Meddahi §

Abstract
In this paper we develop an a posteriori error analysis of a mixed finite element method
for a fluid-solid interaction problem posed in the plane. The media are governed by the
acoustic and elastodynamic equations in time-harmonic regime, respectively, and the
transmission conditions are given by the equilibrium of forces and the equality of the
normal displacements of the solid and the fluid. The coupling of primal and dual-mixed
finite element methods is applied to compute both the pressure of the scattered wave in
the linearized fluid and the elastic vibrations that take place in the elastic body. The
finite element subspaces consider continuous piecewise linear elements for the pres-
sure and a Lagrange multiplier defined on the interface, and PEERS for the stress
and rotation in the solid domain. We derive a reliable and efficient residual-based
a posteriori error estimator for this coupled problem. Suitable auxiliary problems,
the continuous inf-sup conditions satisfied by the bilinear forms involved, a discrete
Helmholtz decomposition, and the local approximation properties of the Clément in-
terpolant and Raviart-Thomas operator are the main tools for proving the reliability
of the estimator. Then, Helmholtz decomposition, inverse inequalities, and the local-
ization technique based on triangle-bubble and edge-bubble functions are employed to
show the efficiency.
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A coupled mixed finite element method for the
interaction problem between electromagnetic field

and elastic body∗

Gabriel N. Gatica † George C. Hsiao ‡ Salim Meddahi §

Abstract
This paper deals with the coupled problem arising from the interaction of a time har-
monic electromagnetic field with a three-dimensional elastic body. More precisely, we
consider a suitable transmision problem holding between the solid and a sufficiently
large annular region surrounding it, and aim to compute both the magnetic compo-
nent of the scattered wave and the stresses that take place in the obstacle. To this
end, we assume Voigt’s model, which allows interaction only through the boundary
of the body, and employ a dual-mixed variational formulation in the solid media. As
a consequence, one of the two transmission conditions becomes essential, whence it
is enforced weakly through the introduction of a Lagrange multiplier. The abstract
framework developed in a recent work by A. Buffa is applied next to show that our
coupled variational formulation is well posed. In addition, we define the corresponding
Galerkin scheme by using PEERS in the solid and the edge finite elements of Nédélec
in the electromagnetic region. Then, we prove that the resulting coupled mixed finite
element scheme is uniquely solvable and convergent. Moreover, optimal a priori error
estimates are derived in the usual way. Finally, some numerical results illustrating the
analysis and the good performance of the method are also reported.
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A residual-based a posteriori error estimator for a fully
mixed formulation of the Stokes-Darcy coupled problem∗

Gabriel N. Gatica † Ricardo E. Oyarzúa ‡ Francisco J. Sayas§

Abstract

In this paper we develop an a posteriori error analysis of a fully mixed finite element
method for the coupling of fluid flow with porous media flow. The flows are governed by
the Stokes and Darcy equations, respectively, and the transmission conditions are given
by mass conservation, balance of normal forces, and the Beavers-Joseph-Saffman law.
The finite element subspaces consider Raviart-Thomas elements for the stress tensor
of the Stokes equations, piecewise constants and Raviart-Thomas elements for the
velocities, piecewise constants for the pressure in the porous medium, and continuous
piecewise linear elements for the Lagrange multipliers defined on the interface. We
derive a reliable and efficient residual-based a posteriori error estimator for this coupled
problem. The proof of reliability makes use of Helmholtz decompositions and local
approximation properties of the Clément interpolant and Raviart-Thomas operator.
On the other hand, the localization technique based on triangle-bubble and edge-bubble
functions constitute the main tools for proving the efficiency of the estimator. Finally,
some numerical results illustrating the analysis and confirming the good performance
of the corresponding adaptive algorithm are reported.
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About computing the nonlinear interaction between
weakly converging sequences and its influence in optimal

design and nonlinear elasticity

Sergio Gutiérrez∗ Joaqúın Mura†

Abstract

When solving a calculus of variations problem, very often one encounters weakly con-
verging sequences that interact in a nonlinear manner. Two paradigmatic examples of
this are the broad area of optimal design, see [1], and the characterization of the energy
density functions to be used in nonlinear elasticity. For the latter we present the use
of Compensated Compactness, [6], to derive a computational method to look for the
elusive counterexample of a rank-one, non quasiconvex energy density in the planar
case, see [4] and [5]. In the context of optimal design we present the small amplitude
homogenization approach introduced in [2] and used later in [3], which is based on
the use of the technique of H-measures introduced by L. Tartar in [7], to compute the
interaction between the design variable and the state function.

References

[1] G. Allaire, Shape Optimization by the Homogenization Method. Springer-Verlag (2002).

[2] G. Allaire, S. Gutiérrez, Optimal design in small amplitude homogenization.
ESAIM Math. Modelling and Numerical Analysis, 41(3) 543-574 (2007). Preprint avail-
able at http://www.cmap.polytechnique.fr/preprint/repository/576.pdf.

[3] S. Gutiérrez, J. Mura, Small amplitude homogenization applied to inverse problems.
Computational Mechanics, 41(5) 699-706 (2008).
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Mortar boundary elements∗

Martin Healey† Norbert Heuer‡

Abstract

Recently we started investigating non-conforming boundary element methods. The first
paper [1] deals with the incorporation by Lagrangian multipliers of essential boundary
conditions at the border of open surfaces in trace spaces of H1. The second paper [2]
analyzes the use of Crouzeix-Raviart elements for the discretization of hypersingular
operators. Although in both cases there are no well-posed continuous formulations we
proved that the discrete schemes converge almost quasi-optimally, that is, standard a
priori error estimates are perturbed only by logarithmic terms. In this talk we deal with
the more general case of domain decomposition in trace spaces of H1 where continuity
of approximating functions across interfaces is incorporated in a weak discrete sense.
This strategy gives huge flexibility for discretizations which can be almost indepen-
dent in individual sub-domains. Such a discretization is well-known for finite elements
and is called mortar method. We consider this domain decomposition method for
the discretization of hypersingular integral equations, prove its almost quasi-optimal
convergence and present numerical results to underline the theory.
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Superconvergence scheme of a locking free FEM in a
Timoshenko optimal control problem∗

Erwin Hernández† Enrique Otárola‡

Abstract

In this work we analyze the numerical approximation of an optimal control problem of a
Timoshenko beam, by considering two kind of distributed control: on the displacements
and/or on the rotations. The discretization of the control variables is using piecewise
constant functions. The state and the adjoint state are discretized by a locking free
scheme of linear finite elements. An interpolation postprocessing technique is used to
the approximations of the optimal solution of the continuous optimal control problem.
It is proved that these approximations have superconvergence order h2.
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Hybrid boundary elements scheme for modeling
flat structures in R3

Carlos Jerez-Hanckes ∗ Jean-Claude Nédélec †

Abstract

We present an augmented boundary element method for modeling elliptic and wave
propagation problems in R3 with Dirichlet conditions imposed over flat surfaces hav-
ing very large aspect ratios. For this, we study unbounded connected domains Ω :=
Rd \ Γ̄m, d = 2, 3, where Γm is an orientable manifold of co-dimension one, e.g., a
line segment or a plane. Thus, Ω is not even Lipschitz and problems defined therein
usually fall in the category of screen, crack or interface problems [1], [2], [3], for which
solutions are known to possess singular behaviors [4] and classical Galerkin or collo-
cation methods show poor convergence. The talk is organized as follows. We first
analyze simple problems in R2 with Γm described by a Jordan curve, and observe that
the associated single layer potentials can be reduced to compactly perturbed logarith-
mic integral operators. Their solutions are shown to be accurately given by weighted
Tchebychev polynomials. Then, we extend these ideas to manifolds in R3 with only
one bounded direction, e.g., infinite strips or cylinders, and show that localized single
layer operators also portray logarithmic singularities. Entirely bounded surfaces with
large length-to-width ratios are next considered. If the manifold boundary ∂Γm is Lip-
schitz, corner singularities may show up. To handle this, our numerical scheme uses
the previous observations and employs different discretization bases according to the
encountered singular behavior – corner or edge. As a concrete application, we show
results for electrostatic and elastic wave generation problems for the so-called surface
acoustic waves interdigital transducers (SAW IDTs) [5].
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static Hybrid Elements Model for SAW Interdigital Transducers. IEEE Ultrasonics, Fer-
roelectrics and Frequency Control Transactions vol. 55, 3, pp. 686–695, (2008).

58



Moving mesh finite element methods for the adaptive
solution of transient PDEs with moving boundaries

Peter Jimack ∗

Abstract

This talk will describe a new adaptive finite element algorithm for the solution of non-
linear diffusion equations using moving grids. The technique is particularly appropriate
for problems with moving boundaries: both external boundaries, where the problem
domain is time-dependent, and internal boundaries such as interfaces between phases.
The approach is based upon conserving the distribution of a monitor function across
the spatial domain throughout time, and this conservation principle is used to drive the
velocity of the nodes in the moving mesh. A number of computational examples will
be presented from a wide range of sample applications including the porous medium
equation (second order nonlinear diffusion), droplet spreading problems (fourth order
nonlinear diffusion) and phase-change problems. The computational accuracy and the
practical efficiency of the scheme will be assessed and a number of physical properties
(conservation, self-similarity, waiting times, etc.) will be discussed. This is joint work
with Mike Baines (Reading/Leeds) and Matthew Hubbard (Leeds).
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Estimates for Raviart-Thomas and Nédélec elements
on anisotropic meshes

Ariel L. Lombardi∗

Abstract

In this talk we consider estimates for the Raviart-Thomas [6, 7] and Nédélec [4] inter-
polation operators of any order on tetrahedral meshes with arbitrarily narrow elements.
More precisely, we obtain interpolation error estimates on meshes satisfying two dif-
ferent geometrical restrictions, namely, the “regular vertex property” (RVP) and the
“maximum angle condition” (MAC) [1]. These two conditions allow for meshes that
not satisfy the standard shape regularity assumption [2], which appear naturally, for
instance, in the approximations of boundary layers. The RVP is a stronger condition
than the MAC. The estimates are obtained in each element of the mesh paying atten-
tion to the dependence of the constants on the geometrical properties of the element.
The global estimate is obtained adding the individual ones. Then we are interested in
two kind of estimates: (1) estimates valid uniformly for all elements having a partic-
ular geometrical property, and (2) anisotropic estimates also valid uniformly for some
class of elements. We say that an estimate is of anisotropic type when in front each
derivative appear the lengths of the element in the corresponding directions. Related
results were previously obtained, for instance, in [3] for Raviart-Thomas interpolation
in two dimensions or in three dimensions under the RVP, and in [5] for the Nédélec
interpolation of lowest degree. For the Raviart-Thomas interpolation we obtain error
estimates valid uniformly under the MAC, but anisotropic estimates can be proved
only under the RVP. This is not the case for the Nédélec interpolation, for which we
can obtain anisotropic error estimates also under the MAC. These results are partly
joint work with Thomas Apel, Gabriel Acosta, and Ricardo G. Durán.
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Mixed FEM-BEM coupling for non-linear transmission
problems with Signorini contact

Matthias Maischak∗

Abstract

In this paper we generalize the approach in [5] and discuss an interface problem consist-
ing of a non-linear partial differential equation in Ω ⊂ Rn (bounded, Lipschitz, n ≥ 2)
and the Laplace equation in the unbounded exterior domain Ωc := Rn\Ω̄ fulfilling
some radiation condition, which are coupled by transmission conditions and Signorini
conditions imposed on the interface. The interior pde is discretized by a mixed formu-
lation, whereas the exterior part of the interface problem is rewritten using a Neumann
to Dirichlet mapping (NtD) given in terms of boundary integral operators. We treat
the general numerical approximation of the resulting variational inequality and discuss
the non-trivial discretization of the NtD mapping. Assuming some abstract approxi-
mation properties and a discrete inf-sup condition we prove existence and uniqueness
and show an a-priori estimate, which generalizes the results in [5]. Choosing Raviart-
Thomas elements and piecewise constants in Ω and hat functions on ∂Ω the discrete
inf-sup condition is satisfied [1, 3]. We present a solver based on a modified Uzawa
algorithm, reducing the solution procedure of the non-linear saddle point problem with
an inequality constraint to the repeated solution of a standard non-linear saddle point
problem and the solution of a variational inequality based on an elliptic operator.
Finally, we present a residual based a-posteriori error estimator compatible with the
Signorini condition and a corresponding adaptive scheme, see [6]. Some numerical ex-
periments are shown which illustrate the convergence behavior of the uniform h-version
with triangles and rectangles and the adaptive scheme as well as the bounded iteration
numbers of the modified Uzawa algorithm, underlining the theoretical results.
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Error estimates for the finite volume discretization
of the porous medium equation∗

Iuliu S. Pop † Mauricio A. Sepúlveda ‡

Abstract

This work is motivated by a combined mixed finite element (MFE) - finite volume (FV)
scheme of a two phase flow model for the heap leaching of copper ores modeled by a
degenerate parabolic equation

∂tu−∇ · (∇β(u) + F (u)) = r(u), in QT ≡ (0, T )× Ω.

Initially we have u(0) = u0 in Ω, whereas u = 0 on ∂Ω. In the above 0 < T < ∞
is fixed, Ω is a bounded domain in Rd(d ≥ 1) with a Lipschitz continuous boundary.
The function β : R → R is non-decreasing and differentiable. By degeneracy we mean
a vanishing diffusion, namely β′(u) = 0 for some u. We prove error estimates for the
finite volume discretization for this model. Several numerical results illustrating the
performance of the algorithm are provided.
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versidad de Concepción, Casilla 160-C, Concepción, Chile, e-mail: mauricio@ing-mat.udec.cl

65
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Explicit solutions to nonlinear partial differential
equations via nonlocal symmetries∗

Enrique G. Reyes†

Abstract

In this talk I review some recent work on the theory and application of nonlocal sym-
metries of nonlinear PDEs. This theory was originally developed by A. Vinogradov
and J. Kasil’shchik in the 1980’s and 1990’s as a chapter of their formal theory of dif-
ferential equations. I would like to show how this theory can be implemented in such
a way as to make its application straightforward and useful for applied and numerical
mathematics. As examples, I present non-trivial explicit solutions (which could be
used to test numerical methods) to the Kaup-Kupershmidt equation

qt = qxxxxx + 5 q qxxx +
25
2

qxqxx + 5 q2qx (1)

and also a Darboux transformation for the important Camassa-Holm equation

2 ux uxx + u uxxx = ut − uxxt + 3 ux u . (2)
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BEM–FEM coupling: back to the beginning∗

Francisco–Javier Sayas †

Abstract

The first coupled method of finite and boundary elements originated in the late sev-
enties and has been commonly referred to as the Johnson–Nédélec, one–equation or
unsymmetric coupling. Its main drawback, as originally perceived, was the need for
a particular boundary integral operator to be compact. This fact demanded smooth
enough coupling interfaces (which was a clear inconvenience from the FEM point of
view) and precluded its use for linear elasticity. Although it was not recognized at the
time, the problem was purely theoretical in nature. We prove here that by recasting the
discrete equations as a non–standard transmission problem, the lost ellipticity is recov-
ered and that Johnson–Nédélec’s coupling is stable for any pair of discrete BEM–FEM
spaces.
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Efficient meshless methods for pseudodifferential
equations on the sphere

Thanh Tran∗ Duong Pham∗

Abstract

Radial basis functions are used to approximate the solutions of pseudodifferential equa-
tions on the sphere. These equations arise for example in geodesy and earth science.
The use of radial basis functions ameliorates the situation when given facts are obtained
as scattered data. A unified analysis for both the Galerkin and collocation methods
will be discussed. Numerical experiments on relatively large scattered data point sets
taken from MAGSAT satellite data will be presented.
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A parameter–uniform finite difference method for a
singularly perturbed multiscale linear dynamical system∗

S. Valarmathi † John J.H. Miller ‡

Abstract

A system of singularly perturbed ordinary differential equations of first order with
given initial conditions is considered. The leading term of each equation is multiplied
by a small positive parameter, which can be arbitrarily small. These parameters are,
in general, unequal. The components of the solution exhibit overlapping layers corre-
sponding to the various distinct time scales occurring in the solution of the problem.
It is well-known that standard numerical methods do not perform in a robust way,
when they are used to solve a singularly perturbed problem of this kind. In this talk
a new numerical method is constructed. First a Shishkin piecewise–uniform mesh is
introduced, which is used, in conjunction with a classical finite difference discretisa-
tion, to form the new numerical method for solving this problem. It is then proved
that the numerical approximations obtained from this method are essentially first or-
der convergent uniformly with respect to all of the parameters. Extensive numerical
computations are presented to illustrate the utility of this new method in practice.
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